skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Madril, Myah"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The field of ecology has undergone a molecular revolution, with researchers increasingly relying on DNA‐based methods for organism detection. Unfortunately, these techniques often require expensive equipment, dedicated laboratory spaces and specialized training in molecular and computational techniques; limitations that may exclude field researchers, underfunded programmes and citizen scientists from contributing to cutting‐edge science.It is for these reasons that we have designed a simplified, inexpensive method for field‐based molecular organism detection—FINDeM (Field‐deployableIsothermalNucleotide‐basedDetectionMethod). In this approach, DNA is extracted using chemical cell lysis and a cellulose filter disc, followed by two body‐heat inducible reactions—recombinase polymerase amplification and a CRISPR‐Cas12a fluorescent reporter assay—to amplify and detect target DNA, respectively.Here, we introduce and validate FINDeM in detectingBatrachochytrium dendrobatidis, the causative agent of amphibian chytridiomycosis, and show that this approach can identify single‐digit DNA copies from epidermal swabs in under 1 h using low‐cost supplies and field‐friendly equipment.This research signifies a breakthrough in ecology, as we demonstrate a field‐deployable platform that requires only basic supplies (i.e. micropipettes, plastic consumables and a UV flashlight), inexpensive reagents (~$1.29 USD/sample) and emanated body heat for highly sensitive, DNA‐based organism detection. By presenting FINDeM in an ecological system with pressing, global biodiversity implications, we aim to not only highlight how CRISPR‐based applications promise to revolutionize organism detection but also how the continued development of such techniques will allow for additional, more diversely trained researchers to answer the most pressing questions in ecology. 
    more » « less